目录

Dijkstra(迪杰斯特拉)算法

https://gitee.com/lienhui68/picStore/raw/master/null/20200705185516.png

有效的程序员不应该浪费很多时间用于程序调试,他们应该一开始就不要把故障引入

Dijkstra算法

  1. 初始化:先找出源点v0到各终点vk的直达路径(v0,vk),即通过一条弧到达的路径。
  2. 选择:从这些路径中找出一条长度最短的路径(v0,u)。
  3. 更新:然后对其余各条路径进行适当调整: 3.1. 若在图中存在弧(u,vk),且(v0,u) + (u,vk) < (v0,vk)则以路径(v0,u,vk)代替(v0,vk)。 在调整后的各条路径中,再找长度最短的路径,依此类推。

Dijkstra算法:按路径长度递增次序产生最短路径 https://gitee.com/lienhui68/picStore/raw/master/null/20200705184650.png

  1. 把V分成两组 1.1. S:已求出最短路径的顶点集合 1.2. T=V-S:尚未确定最短路径的顶点集合
  2. 将T中顶点按最短路径递增的次序加入到S中

保证:

  1. 从源点到S中各顶点的最短路径长度都不大于从v0到T中任何顶点的最短路径长度。
  2. 每个顶点对应一个距离值: S中顶点:从v0到此顶点的最短路径长度 T中顶点:从v0到此顶点的只包括S中顶点做中间顶点的最短路径长度。

算法步骤

https://gitee.com/lienhui68/picStore/raw/master/null/20200705194134.png

代码实现

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
package com.eh.ftd.dsa.ds;

import com.google.common.collect.Lists;

import java.util.ArrayList;
import java.util.List;

/**
 * Dijkstra(迪杰斯特拉)算法
 * 目标:
 * 1. 起点到各节点的最短路径距离
 * 2. 打印起点到各节点的最短路径
 *
 * @author David Li
 * @create 2020/07/05 20:19
 */
public class Dijkstra {
    /**
     * 起点到各节点的最短距离
     * dist[1], 起点到节点1的最短距离
     */
    private int[] dist;

    /**
     * 起点到各节点的最短路径
     * path[1], 起点到节点1到的最短路径
     */
    private String[] path;

    /**
     * 图的邻接矩阵表现形式
     * 0表示自己指向自己,值为Integer.MAX_VALUE表示无穷远
     */
    private int[][] matrix;

    /**
     * 顶点的表现形式
     */
    private List<String> vertexNames;

    /**
     * 表示顶点是否被访问过, 如果是则表明已经加入到最小生成树中
     */
    private boolean[] visited;


    public Dijkstra(List<String> vertexNames) {
        this.matrix = new int[vertexNames.size()][vertexNames.size()];
        this.vertexNames = vertexNames;
        this.visited = new boolean[vertexNames.size()];
        dist = new int[vertexNames.size()];
        // 初始化邻接矩阵
        for (int i = 0; i < vertexNames.size(); i++) {
            for (int j = 0; j < vertexNames.size(); j++) {
                if (i == j) {
                    matrix[i][j] = 0;
                } else {
                    matrix[i][j] = Integer.MAX_VALUE;
                }
            }
        }
        // 初始化路径信息
        path = new String[vertexNames.size()];
        path[0] = vertexNames.get(0);

        // 初始化起点坐标
        visited[0] = true;
        dist[0] = 0;
    }


    /**
     * 获得顶点对应下标
     *
     * @param vertexName
     * @return
     */
    private int getIndexByVertexName(String vertexName) {
        for (int i = 0; i < vertexNames.size(); i++) {
            if (vertexName.equals(vertexNames.get(i))) {
                return i;
            }
        }
        throw new RuntimeException();
    }

    public void printMinimumPathAndDist() {
        for (int i = 0; i < vertexNames.size(); i++) {
            System.out.printf("%s(%s) - >\t", path[i], dist[getIndexByVertexName(path[i])]);
        }
    }

    public void dijkstra() {
        int leaf = 0;
        int count = 1;
        while (leaf != -1) {
            // 1. 从所有S集合以外的节点中选出最短路径值最小的节点加入到S集合
            leaf = -1;
            int min = Integer.MAX_VALUE;
            for (int i = 1; i < vertexNames.size(); i++) {
                if (dist[i] < min && !visited[i]) {
                    leaf = i;
                    min = dist[i];
                }
            }
            if (leaf == -1) {
                return;
            }
            // 将leaf加入S
            visited[leaf] = true;
            path[count++] = vertexNames.get(leaf);
            // 2. 调整最短距离
            for (int i = 1; i < vertexNames.size(); i++) {
                if (matrix[leaf][i] < Integer.MAX_VALUE && !visited[i]) { // 被leaf指向
                    int newDist = dist[leaf] + matrix[leaf][i];
                    if (newDist < dist[i]) {
                        dist[i] = newDist;
                    }

                }
            }
        }
    }

    /**
     * 有向图
     *
     * @param v1
     * @param v2
     * @param weight
     */
    public void buildEdge(String v1, String v2, int weight) {
        int idx1 = getIndexByVertexName(v1);
        int idx2 = getIndexByVertexName(v2);
        matrix[idx1][idx2] = weight;
        if (idx1 == 0) {
            dist[idx2] = weight;
        } else if (dist[idx2] == 0) {
            dist[idx2] = Integer.MAX_VALUE;
        }
    }

    public static void main(String[] args) {
        List cites = Lists.newArrayList("v0", "v1", "v2", "v3", "v4", "v5", "v6");
        Dijkstra dijkstra = new Dijkstra(cites);
        dijkstra.buildEdge("v0", "v1", 13);
        dijkstra.buildEdge("v0", "v2", 8);
        dijkstra.buildEdge("v0", "v4", 30);
        dijkstra.buildEdge("v0", "v6", 32);

        dijkstra.buildEdge("v1", "v5", 9);
        dijkstra.buildEdge("v1", "v6", 7);

        dijkstra.buildEdge("v2", "v3", 5);
        dijkstra.buildEdge("v3", "v4", 6);
        dijkstra.buildEdge("v4", "v5", 2);
        dijkstra.buildEdge("v5", "v6", 17);
        dijkstra.dijkstra();
        dijkstra.printMinimumPathAndDist();


    }
}