目录

Kruskal算法

克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。

基本思想

基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路。 注意:判断无向图是否有环需要使用{%post_link 工作/100_计科基础/数据结构与算法/理论/并查集(Disjoint-Set)%}这种数据结构,这是Kruskal算法很关键的一个地方。 具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止。 可以把kruskal算法理解为边优先

算法步骤

https://gitee.com/lienhui68/picStore/raw/master/null/20200705141015.png https://gitee.com/lienhui68/picStore/raw/master/null/20200705141038.png https://gitee.com/lienhui68/picStore/raw/master/null/20200705141053.png 依次类推,直到连通网中没有孤岛 https://gitee.com/lienhui68/picStore/raw/master/null/20200705141120.png 代码实现:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
    public void buildMSTWithKruskal() {
        // 1. 获取所有排序后的边
        List<Edge> edges = getAllSortedEdges();
        // 2. 将这个边的两个顶点加入到连通网中
        DisjointSet disjointSet = new DisjointSet(vertexNames.size());
        int count = 0;
        while (true) {
            Edge edge = edges.get(0);
            System.out.printf("当前边:%s,%s\n", vertexNames.get(edge.s), vertexNames.get(edge.t));
            int mergeRes = disjointSet.merge(edge.s, edge.t);
            // 如果没有构成环路则保存连通信息,直到所有的顶点都加入到MST
            if (mergeRes == 1) {
                mstEdges[count++] = edge;
            }
            // 继续下一条边
            edges.remove(edge);
            if (count == vertexNames.size() - 1) {
                // 构成n-1条边说明mst已经生成
                break;
            }
        }
    }

完整代码

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
package com.eh.ftd.dsa.ds;

import com.google.common.collect.Lists;

import java.util.Arrays;
import java.util.Collections;
import java.util.List;

/**
 * Kruskal算法
 *
 * @author David Li
 * @create 2020/07/05 14:12
 */
public class Kruskal {

    /**
     * 图的邻接矩阵表现形式
     * 0表示自己指向自己,值为Integer.MAX_VALUE表示无穷远
     */
    private int[][] matrix;

    /**
     * 顶点的表现形式
     */
    private List<String> vertexNames;

    /**
     * 保存最小生成树连通信息
     */
    private Edge[] mstEdges;

    class Edge implements Comparable<Edge> {
        int s; // 边的起始坐标
        int t; // 边的末端坐标

        public Edge(int s, int t) {
            this.s = s;
            this.t = t;
        }

        @Override
        public int compareTo(Edge o) {
            return matrix[s][t] - matrix[o.s][o.t];
        }
    }

    /**
     * 表示顶点是否被访问过, 如果是则表明已经加入到最小生成树中
     */
    private boolean[] visited;

    public Kruskal(List<String> vertexNames) {
        this.matrix = new int[vertexNames.size()][vertexNames.size()];
        this.vertexNames = vertexNames;
        this.visited = new boolean[vertexNames.size()];
        mstEdges = new Edge[vertexNames.size() - 1];
        for (int i = 0; i < vertexNames.size(); i++) {
            for (int j = 0; j < vertexNames.size(); j++) {
                if (i != j) {
                    matrix[i][j] = Integer.MAX_VALUE;
                }
            }
        }

    }

    public void buildEdge(String v1, String v2, int weight) {
        int idx1 = getIndexByVertexName(v1);
        int idx2 = getIndexByVertexName(v2);
        matrix[idx1][idx2] = weight;
        matrix[idx2][idx1] = weight;
    }

    public void buildMSTWithKruskal() {
        // 1. 获取所有排序后的边
        List<Edge> edges = getAllSortedEdges();
        // 2. 将这个边的两个顶点加入到连通网中
        DisjointSet disjointSet = new DisjointSet(vertexNames.size());
        int count = 0;
        while (true) {
            Edge edge = edges.get(0);
            System.out.printf("当前边:%s,%s\n", vertexNames.get(edge.s), vertexNames.get(edge.t));
            int mergeRes = disjointSet.merge(edge.s, edge.t);
            // 如果没有构成环路则保存连通信息,直到所有的顶点都加入到MST
            if (mergeRes == 1) {
                mstEdges[count++] = edge;
            }
            // 继续下一条边
            edges.remove(edge);
            if (count == vertexNames.size() - 1) {
                // 构成n-1条边说明mst已经生成
                break;
            }
        }
    }


    /**
     * 获取所有的边并从小到大排序
     *
     * @return
     */
    private List<Edge> getAllSortedEdges() {
        List<Edge> edges = Lists.newArrayList();
        for (int i = 0; i < vertexNames.size(); i++) {
            for (int j = 0; j < vertexNames.size(); j++) {
                // i<=j 是因为这个图是无向图, i->j和j->i是一样的
                if (matrix[i][j] == Integer.MAX_VALUE || i >= j) {
                    // 过滤无意义的边
                    continue;
                }
                edges.add(new Edge(i, j));
            }
        }
        Collections.sort(edges);
        return edges;
    }


    /**
     * 获取最小生成树权值和
     *
     * @return
     */
    public int getMinimumWeight() {
        int res = 0;
        for (Edge e : mstEdges) {
            res += matrix[e.s][e.t];
        }
        return res;
    }

    /**
     * 打印最小生成树的连通信息
     */
    public void printPrimeMST() {

        for (Edge edge : mstEdges) {
            System.out.printf("{%s,%s}", vertexNames.get(edge.s), vertexNames.get(edge.t));
        }
    }


    /**
     * 获得顶点对应下标
     *
     * @param vertexName
     * @return
     */
    private int getIndexByVertexName(String vertexName) {
        for (int i = 0; i < vertexNames.size(); i++) {
            if (vertexName.equals(vertexNames.get(i))) {
                return i;
            }
        }
        throw new RuntimeException();
    }

    public static void main(String[] args) {
        List cites = Lists.newArrayList("A", "B", "C", "D", "E", "F", "G");
        Kruskal kruskal = new Kruskal(cites);
        kruskal.buildEdge("A", "B", 12);
        kruskal.buildEdge("A", "F", 16);
        kruskal.buildEdge("A", "G", 14);
        kruskal.buildEdge("B", "C", 10);
        kruskal.buildEdge("B", "F", 7);
        kruskal.buildEdge("C", "D", 3);
        kruskal.buildEdge("C", "E", 5);
        kruskal.buildEdge("C", "F", 6);
        kruskal.buildEdge("D", "E", 4);
        kruskal.buildEdge("E", "F", 2);
        kruskal.buildEdge("E", "G", 8);
        kruskal.buildEdge("F", "G", 9);

        kruskal.buildMSTWithKruskal();

        System.out.printf("最小生成树的权值和为: %d\n", kruskal.getMinimumWeight()); // 39
        System.out.println("最小生成树的连通信息:");
        kruskal.printPrimeMST();
    }
}

运行结果: https://gitee.com/lienhui68/picStore/raw/master/null/20200705152423.png